Electric Vehicles in St. Johns–Let’s be Rational

There’s been considerable debate regarding a recent RFP to purchase a pair of electric vehicles as part of the St. John’s city fleet. As expressed by councillor Dave Lane, who spearheaded the proect, the plan was to make the new vehicles available to the parking enforcement unit and to treat the whole thing as a pilot project and to see where things went.

Initially this did draw considerable, polarized, interest with those for it noting that much could be learned from the acquisition and use of the vehicles and, besides, the cost of operating them should be considerably cheaper. Those against typically viewed the whole thing as not worth the bother; playing with newfangled toys. The debate was brought to a head, though, by a letter written to the council by former mayor Andy Wells in which he slammed the plan as a waste of taxpayers’ money and concluding that electric vehicles are, in general, ” ‘driveway jewelry’ for the eco-affluent, who benefit from public subsidy to indulge their guilt about living in a fossil-fuel-dependent society,”

Then the fight started, the polar opposites moved yet further apart and both sanity as well as reason, it seems, exited the building.

Still, though, it’s impossible to ignore the fact that, year by year, electric vehicles (EV’s) are becoming more and more prevalent. Sales, while not exactly meeting the growth targets guessed at 4 years ago (they were expected to triple each year) have still been showing decent growth. What’s more, most of the major manufacturers are in on the industry. Presently, models are available from GM, Toyota, Nissan, Fiat, Daimler, Mitsubishi and of course Tesla to name just a few.

With a little time on my hands I investigated the costs associated with the requested purchase for the city. I asked just one question: does it make financial sense? In other words should the expected reduced cost of operation translate to a lower cost of ownership. Not to spoil the rest of the post but the short answer is “no” but it’s worth reading on, if you have the time and interest.

Let’s look at the cost for just one car and let’s leave the cost of the charging station out of it altogether since the car doesn’t really need a dedicated charging station as such; all it needs is access to a 110 V or a 220 V (preferred) standard outlet. Since the EV is to be used just around the city, all of the costs should be based on that type of driving.

Now—what car to choose? While no doubt some users would love to cruise around in something very nice such as the luxurious and trendy Tesla S,  we have to be more pragmatic here and choose something better suited to the job at hand. It’s for parking enforcement and won’t be carrying significant cargo. It’s also bought on the taxpayers’ dime so it therefore needs to be inexpensive. For the sake of argument let’s choose the Nissan Leaf.

Nissan Leaf (Wikipedia)

Let’s stick with the base model. According to Nissan’s website it can be had here for $33,788.00. Not exactly cheap but the expectation is that what we lose up-front we’ll gain back in the long term with lower operating costs.

Let’s figure them out. Let’s start with charging the battery. According to Nissan, the battery capacity is 24 kWh so you might assume that it therefore will take that much electricity to charge it. You need to take into account, though, the simple reality that no process is 100% efficient. You may notice that when batteries are charging and discharging they warm up. This means that some of the energy is being wasted as heat. You can expect, therefore to need more than 24 kWh.

Based on some data found here I am assuming 85% efficiency this means that to fully charge the battery you must therefore supply (24/0.85) or 28 kWh of energy. At NL Power’s current rate of $0.1178 / kW h this means a full charge will cost $3.30.

Next you need to determine how far a charge will get you. Nissan’s stated figure is of 135 km for a full charge.  The US EPA, however lists a much more conservative value of 117 km. Given the fact that batteries function les efficiently in cold temperatures, however, it makes sense to question the validity of even this figure. Fortunately, some low temperature data are available. The website fleetcarma.com has listed some empirically derived figures of how the range per charge varies with temperature so let’s use those.

We also need to use temperatures that are realistic for this setting. Average temperatures by season can be found here. Let’s assume that the vehicles will be driven 20,000 km/year and, further, let’s assume equal distances in each season. Since the temperatures will be different in each season let’s take that into account. The table below lists the anticipated costs for driving 5000 km in each season, as well as the yearly total.

Season Temperature (degrees C) Range (km) Cost for charge Cost for $5000 km
Winter 1 70 $3.30 $236
Spring 8 75 $3.30 $220
Summer 19 77 $3.30 $214
Fall 13 77 $3.30 $214
Yearly total $884

Table 1: Yearly charging cost for Leaf, assuming 20,000 km

Now let’s compare the EV to something reasonable. Since we started with a small Nissan EV let’s compare it to a small conventional Nissan, the Versa. Once again, let’s stick with the base model but equip it with an automatic transmission to make it more functionally equivalent to the Leaf. According to Nissan’s website that vehicle should come in at $17,165.00.

Nissan Versa Note (Wikipedia)

Now we need to find the cost of fuel for 20,000 km. Based on US EPA figures the Nissan Versa is rated at 7.6 L/100 km in city driving so you can expect to use 1520 litres to drive the 20,000 km in a year. The variability in gas pricing makes it impossible to provide a definitive single cost so upper and lower figures will be used instead.

According to Gas Buddy the yearly low was $0.95/l and the high was $1.44/l. This then gives two yearly fuel costs.

Based on $0.95/l
“low fuel”
Based on $1.44/l“high fuel”
Yearly fuel cost $1444 $2189

Table 2: Fuel costs for Versa, assuming 20,000 km

Now the maintenance. Data on this are available in US$ from autoblog.com and are presented in the table below (converted to Canadian dollars). Interestingly enough the figures are roughly the same and could realistically have been omitted from the calculation.

Vehicle Leaf Versa
Repairs and Maintenance $4844.20 4857.94

Table 3: Maintenance and repair

So, finally, let’s look at the total five year cost for the two vehicles. Insurance and licensing will be the same for both so we can omit them.

Item Leaf Versa (low fuel) Versa (high fuel)
Purchase Cost $33,788.00 $17,165.00 $17,165.00
Fuel $4420.00 $7220.00 $10945.00
Repair and Maintenance $4844.20 $4857.94 $4857.94
Total $43052.20 $29242.94 $32967.94

Table 4: Five year cost of ownership, based on purchase with no resale.

Clearly, presented this way, there’s no contest. Based on straight up purchase the leaf will cost anywhere from around $9000 to around $14000 extra to own over the five-year period.

Now, you may be crying foul, “wait a minute, you don’t ditch the car after 5 years. The Leaf will be worth more at the end of that period so this is not a fair comparison.” Fine. Let’s factor in depreciation. Once again the estimates came from autoblog.

Leaf Versa
Original Cost $33788.00 $17165.00
Depreciation $21317.32 $9115.47
Resale Value $12471.00 $8049.53

Table 5: Expected depreciation and resale values

Set’s just do the total cost table 4 above over again but use depreciation instead of purchase cost.

Item Leaf Versa (low fuel) Versa (high fuel)
Purchase Cost $21317.32 $9115.47 $9115.47
Fuel $4420.00 $7220.00 $10945.00
Repair and Maintenance $4844.20 $4857.94 $4857.94
Total $30581.32 $21193.41 $24918.41

Table 6: Five year cost of ownership, based on purchase with resale

The Leaf is still considerably more expensive, even when you consider a worst case scenario for gasoline.

From a strictly cost-based perspective, then, it does not make sense to procure and use the EV’s if the assumptions used are valid.

That’s not really the end of the story, though, is it? It’s not my intention to be negative here, just reasonable, and since the main argument put forward was based on cost it needed to be pointed out that it was likely invalid. That said, there are far more compelling reasons that may still make the plan a good idea. Consider these:

First, you need to consider the overall environmental impact of EV’s. They have the potential of being much cleaner and environmentally friendly. Assuming that the batteries are correctly recycled and re-purposed (and there’s cause for some optimism in that area, see here.) then the real environmental issue is related to the source of the electricity. Right now in NL, unfortunately that’s just a bad joke as the electricity is as non-green as it gets, coming, as it does, from a dirty thermal generating plant. Later, though, when the feed is switched over to the Hydro-based Muskrat Falls plant that will be an entirely different matter; much greener. Simply put, right now electric cars are just contributing to the pollution coming from the Holyrood Plant bit that will change in a few years—right about the time those vehicles are ready to come off the road as it turns out.

Second, you need to consider the value in foresight and planning—something often badly absent from the NL milieu. (As an aside a good friend often half-jokes that the NL Government’s idea of long-term planning is, “what’s for supper?” His words, not mine.) Based on the best available data it does seem likely that EV’s will become more and more prevalent as time goes on. To what extent? I would suggest it is impossible to ascertain that right now. It’s still worth considering. As such not only the city but also the province needs to devote a reasonable amount of time and effort in gathering pertinent empirical data regarding use costs, reliability, safely and infrastructure needs. In that light, the proposed plan, if altered and fleshed out appropriately as a rigorous pilot project, and not just a vague idea, can easily be seen to have significant merit.

So maybe the best advice to those involved should be this: plan it all out a bit better, look again at the timelines and goals, and maybe see if partnership assistance is available from the province. Don’t just mess around driving from meter to meter and, asking the traffic enforcement officials, “how’s it going with the new EV’s?” from time to time. No, devise a proper plan and implement it. Log everything: kilometers driven, time needed to charge, energy transferred in the charge, times required, maintenance and repairs–everything. Put it up there where we can all see it and benefit from it. In that way, properly implemented, the project does have the possibility of yielding information that can be used by consumers and governments alike.